Length-dependent CTG·CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells.

نویسندگان

  • Jintang Du
  • Erica Campau
  • Elisabetta Soragni
  • Christine Jespersen
  • Joel M Gottesfeld
چکیده

Myotonic dystrophy type 1 (DM1) is an inherited dominant muscular dystrophy caused by expanded CTG·CAG triplet repeats in the 3' untranslated region of the DMPK1 gene, which produces a toxic gain-of-function CUG RNA. It has been shown that the severity of disease symptoms, age of onset and progression are related to the length of the triplet repeats. However, the mechanism(s) of CTG·CAG triplet-repeat instability is not fully understood. Herein, induced pluripotent stem cells (iPSCs) were generated from DM1 and Huntington's disease patient fibroblasts. We isolated 41 iPSC clones from DM1 fibroblasts, all showing different CTG·CAG repeat lengths, thus demonstrating somatic instability within the initial fibroblast population. During propagation of the iPSCs, the repeats expanded in a manner analogous to the expansion seen in somatic cells from DM1 patients. The correlation between repeat length and expansion rate identified the interval between 57 and 126 repeats as being an important length threshold where expansion rates dramatically increased. Moreover, longer repeats showed faster triplet-repeat expansion. However, the overall tendency of triplet repeats to expand ceased on differentiation into differentiated embryoid body or neurospheres. The mismatch repair components MSH2, MSH3 and MSH6 were highly expressed in iPSCs compared with fibroblasts, and only occupied the DMPK1 gene harboring longer CTG·CAG triplet repeats. In addition, shRNA silencing of MSH2 impeded CTG·CAG triplet-repeat expansion. The information gained from these studies provides new insight into a general mechanism of triplet-repeat expansion in iPSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling diseases of noncoding unstable repeat expansions using mutant pluripotent stem cells.

Pathogenic mutations involving DNA repeat expansions are responsible for over 20 different neuronal and neuromuscular diseases. All result from expanded tracts of repetitive DNA sequences (mostly microsatellites) that become unstable beyond a critical length when transmitted across generations. Nearly all are inherited as autosomal dominant conditions and are typically associated with anticipat...

متن کامل

Myotonic dystrophy: the correlation of (CTG) repeat length in leucocytes with age at onset is significant only for patients with small expansions.

Myotonic dystrophy (DM) was the first of a group of diseases to be identified for which the genetic basis is the expansion of a triplet repeat. Myotonic dystrophy also exhibits anticipation, in which the disease worsens through successive generations. These two features have led many groups to analyse whether a significant negative correlation between triplet repeat length and severity of disea...

متن کامل

Triplet Repeat–Derived siRNAs Enhance RNA–Mediated Toxicity in a Drosophila Model for Myotonic Dystrophy

More than 20 human neurological and neurodegenerative diseases are caused by simple DNA repeat expansions; among these, non-coding CTG repeat expansions are the basis of myotonic dystrophy (DM1). Recent work, however, has also revealed that many human genes have anti-sense transcripts, raising the possibility that human trinucleotide expansion diseases may be comprised of pathogenic activities ...

متن کامل

Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure.

Myotonic dystrophy is caused by an expansion of a CTG triplet repeat sequence in the 3' noncoding region of a protein kinase gene, yet the mechanism by which the triplet repeat expansion causes disease remains unknown. This report demonstrates that a DNase I hypersensitive site is positioned 3' of the triplet repeat in the wild-type allele in both fibroblasts and skeletal muscle cells. In three...

متن کامل

Myotonic dystrophy type 1 patient-derived iPSCs for the investigation of CTG repeat instability

Myotonic dystrophy type 1 (DM1) is an autosomal-dominant multi-system disease caused by expanded CTG repeats in dystrophia myotonica protein kinase (DMPK). The expanded CTG repeats are unstable and can increase the length of the gene with age, which worsens the symptoms. In order to establish a human stem cell system suitable for the investigation of repeat instability, DM1 patient-derived iPSC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 22 25  شماره 

صفحات  -

تاریخ انتشار 2013